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An asymptotic method [1} is used for the approximate solution of the problem of the loss of stability of the zero-moment stressed
state of two thin closed elastic cylindrical shells of average length under the action of a uniform external lateral pressure. Simple
approximate formulae are obtained for determining the upper critical pressure and the form of the loss of stability. It is established
that the form of the loss of stability is localized in the neighbourhood of the longest generatrix of the shell which has the greater
length, and that the upper critical pressure differs only slightly from the critical pressure for the longer shell supported by a hinge
along the joining line.

1. Let us assume that the cylindrical shells, joined at an angle 2B, have the same radius R and thickness
k. We denote by x®, o® the system of coordinates in the median surface of the kth shell. Suppose

o = g? =g, x® E[x(()l),xg)((p)]_ o) e[x$2)(<p),x§]
x(@) = xf0 + G AP +1gBeosg), x4 1D = xP (@

IV al® /R k=12
where L® is the “average” length of the Kth shell (Fig. 1).
Here and henceforth, quantities with a superscript k correspond to the kth shell. Superscripts may
be omitted from formulae which hold for both shells.
The equations of stability for each of the shells can be written in the following dimensionless form [2]
Tz - Qz,q) _Ql,x +l(w,w "D,q)) = 0’ S,x + T2,(p +Q2 =0
T +Se=0, Qy=Myg Q=M +2Hy, H=(1-V)’d,,
M =€8(8,, +V0, ), My =€3(Dy4+V0;,) (1.1)
A=VOT =u, +v(w+vg), 1=V, =w+Vq+Vu,
20-V)S=v +ugy, V=-Ww,, Vy=-W,+V
Here, Ty, T5, S, Oy, Oy, My, M,, H are the dimensionless forces and moments, 9; and 3, are the
angles of rotation, u, v and w are the dimensionless projections of the variables, €% = hy[12(1 — v})R?|
is a small parameter, p is the value of the external pressure, v is Poisson’s ratio and E is Young’s

modulus.
Let us assume that the straight edges of the shells are freely supported

TR = p® = = B =0, 1 = 0 (1.2)

Along the line where the shells are joined x(V = D, x® = xP_ the following continuity conditions
must be satisfied:
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Fig. 1.
(a) for the displacements

u$VcsinB+w cosP = —uPcsinB+w? cosp

u'V cosP - wesinP = u'® cosp+wPecsinp

u® = @
where
u® = u® cosy + (=1 0P siny, u® =(-1)*u® siny +v® cosy
tgy +tgPsing@, ¢ =cosycose
(b) for the forces
TPcsinB+ QY cosP = -TPcsin B+ 0 cosp
TV cosp— QPcsinB = T cosp+ QPcsin P
S0 =5
where

T® = T™ cos? y + 2(-1)¥*' ¥ sin y cos ¥ + T sin? y
S = T — T siny cos y + S (cos? y —sin? y)
6 = OB cosy + (-1)**1 O8¥ siny
(c) for the angles of rotation and moments
3D = 9@ g pg@
n n n n

where

MP = M® cos? y+2(-1)**"' H® sinycos y + M sin? y

3% = B8 cosy + (-1 9P siny

(1.3)

(1.4)

(15)

Certain small terms, which have no effect on the approximate formulae obtained in this paper have
been discarded in relationships (1.1)—(1.5). For instance, the effect of subcritical deformations turns
out to be unimportant. However, it did turn out that terms have to be retained in (1.1) which do not
appear in the technical theory of Donnel and Vlasov for determining the critical pressure with the

accuracy adopted in this paper.

It is henceforth assumed that the joining angle B is not a small quantity, that is, B = O(1).

2. We shall seek an approximate solution of the boundary-value problem (1.1)~(1.5), which falls off

exponentially on moving away from the generatrix ¢ = 0, in the form
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)\' = A‘O + GXI + 82)\«2 +... (2.1)
Y =Ya+ Y (2.2)

Here, y is any of the unknown functions occurring in (1.1). The first term in (2.2) describes the basic
semi-zero-moment stress—strain state of the shell and the second describes the simple edge effect close
to the edges x® == x{Y) and the joining line x® = x®. Let us represent the approximate solution y, in
the form [1]

Ny exn| LT
y, =€°05 exp(-ggq((p)d(p) 23)
where
Im{q(0)} =0, Im{q4(0)} >0 (24)
y= 2 "y, (x,9) (25)

In order to determine the intensity factor a(y), the constants A,, and the functions g(@), y.(x, @), we
substitute (2.1) and (2.3) into (1.1). Let us put a(w) = 0. Then, a(v) = 1, a(u) = a(T}) = 2,a(S) =3
and the function w satisfies the equation

a2 0?
GWw—hw=€e’Nw, N= 45—+2 Ag®” (1+2?) (2.6)

o* ad
G=P—+®?, ®=g-ic—
n* - 3¢
Here, @™ is a formal asymptotic series and ®"®"y =y.
The quantities &, U, . . . are expressed in terms of w. In particular
=0, 22+ V)0

2 XXX ?

Ti=-07 , +2e2(q* - hog”)W
D=0 W - ive?® W ., S=-id7 W +2ie’q(g’ - Ao)® W,
We expand the operator G, defined in (2.6) in series in powers of the parameter &

5 A 3G, 3 Gy 3°Gy )
G=3Y "G, Go=—F—5+q°, G =—-i| —2—+22_0
E’o RO N e ( dq a(p+ 2 9¢%

27

1{9%G, 3* 3G, 9  dep 3°G, (40) 3*G
G =—~ 0 0 99 0 9 0
2 (aq2 0 35 90" 3 3 | 4 o

Substituting (2.1), (2.5) and (2.7) into (2.6), we obtain a sequence of equations for determining A,,
and w,(x, 9)

(Go-Aowo =0, (Go—Agyw; + (G ~Apwg=0,... (2.8)
The edge effect functions y, can be represented in the form

. i
y$0) = gb5k) eXP(E"Io(P)’ ) < 2 CP5, 0 (x,€) 29

f‘*’—expl( DFe® —x®yr, 162, j=1,2,3,4
g g(k)_x(k)’ 83 =g4 =x£k)(0)
r,-=—[1+(—1)f:1/«6, J=12, n=-n, n=-y
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where ), C}-(") are unknown constants and go = g(0). The functions f*), £{¥ become rapidly smaller as
the distance from the straight edge of the kth shell becomes larger, and the functions rapidly decrease
as the distance from the joining line increases.

By substituting (2.9) into system (1.1) we can find the relationship between the intensity factors b(y)
and determine y;. In particular

The actual values of the intensity factors
b(w)=2, b(9,)=0, b(M,)=6
b(Q,)=4, b(S,)=3, bT,)=4

are found after substituting the solution (2.2) into the boundary conditions (1.2)«(1.5). The same
substitution enables us to determine the boundary conditions for Eq. (2.8). In the zeroth and first
approximations these conditions are separated into two groups, each of which contains only quantities
which refer to one of the shells. This enables us to solve the boundary-value problems of the zeroth
and first approximations separately for each of the shells.

3. We will now solve the boundary-value problems for Eq. (2.8) in succession. In the zeroth approxi-
mation, we obtain two independent boundary-value problems

(Go~Mo)w§ =0 (1)
w(()") = w((,ﬁx =0 when x*¥' = x((,"), x® = (B
which are identical with the boundary-value problems of the zeroth approximation for the first shell
(k = 1) and the second shell (k = 2) with freely supported edges.
The solution of each of problems (3.1) will be sought in the form
wo (%,9) = Fy(@)Wo(x,9)
Here

R(9) =1+ Vo +V,07 / 2+... (32)

and the coefficients V, are determined when constructing the first approximation. The function W,
satisfied the equation

d*Wy /dx* —o*Wy =0, o =A% -¢° (33)
and the boundary conditions
Wo=W;,, =0 when x=xp, x=x, (34)
It follows from (3.3) and (3.4) that

Ao = o*/g® + 42 = fl9, 9(9)) (3.5)
where a = n/l(p) is the least positive eigenvalue of boundary-value problem (3.3), (3.4), (@) = I, = tg

P ";I?lie(p\.'alues ¢ = 0 and g = gy = g(0) for which
Ao = £(0,4o) = min £(0,4) (3-6)
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correspond to the zeroth approximation for the critical loading parameter Aq.
It follows from (3.6) and (2.4) that

g0 =3"8\og, ag=n/ly, lh=U0)=1 +1gB 3.7
Substituting (3.7) into (3.6), we obtain
Ao =4m/ 334, (3.8)
We will represent g(9) in the form of the series

g=5 B0
=0 n!

where g, is defined by (3.7). In order to find the remaining coefficients g,,, it is necessary to differentiate
(3.5) with respect to ¢ and then put ¢ = 0. In particular

i [AotgP 11g? g, (402 3
=— | == = _.__L, =2 2L 4= K
e 7} 34 493 3\ @ '3 (3.9)

Without loss of generality, it may be assumed that I = I{?. Then I{? = I§? and, consequently, the
critical pressure parameter for the joined shells is calculated in the zeroth approximation using the
formula

A=AQ = 4n/(34LY) (3.10)

The eigenfunctions of boundary-value problem (3.3), (3.4), corresponding to A{Y, can be represent-
ed in the form

Ws» = DV sin[o (xV - x5)), WP = DP sinfa® (x - x'P)]

where D®) are arbitrary constants.
In the non-resonant case

V-5 <1 (3.11)

the boundary-value problem (3.3), (3.4), when k = 2, has only a trivial solution and hence D@ = 0,
In the resonant case

I =1 +€?A, A=0(1) (3.12)
and the ratio D?/DW js determined when constructing the following approximations.
4, The boundary-value problem of the first approximation for each of the shells has the form
(Go —Xo)wy = —(Gy — Ay )wg (4.1)
wi =W, =0 when x=x (4.2)
Wi = Wy — NG W eXe 5= 0 when x =x,
and is an inhomogeneous spectral problem. We obtain the condition for it to be solvable by multiplying

Eq. (4.1) by W, and integrating the resulting equality by parts over the range of variation of x, taking
account of (4.2). After some reduction, the condition of solvability takes the form

fq(R),wlo +Rly)+ (qu + f:qqq,up _'2)'1'.)101:6 /12=0 (4.3)

Xe Xe
Io = fWodx, I = [WoW gdx
xp

0
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In view of the fact that f,(0, gg) = f4¢(0, g0) = 0, it follows from (4.3) that
}\’l = —iq]f:qq (0, qo)/2 - 2‘\'1-0th / 10 (4.4)

- The coefficients ¥, in the expansion (3.2) of the function Py(@) are successively determined by
calculating the derivatives with respect to @ of the left-hand side of (4.3) when ¢ = 0. Taking account
of (3.9), we obtain

Vi “i;gi‘, 2= 1&3;: +% (4.5)
It follows from (4.1) and (4.3) that
(o =Ro)wy == Fu Pl + Ry Woy + 22 W) “6)
The solution of (4.6) will be sought in the form
wy = (@)W + A(@)W 4 + B(9IW,¢, + C(@)sinh[a(x — xp)) “4.7)
We substitute (4.7) into (4.6) and use the equalities
(Go —Ao)Wop = foWos (Go—Ro)Wo g =21, Wo o + fouWo
For the functions A and B, we obtain the expressions
A-—é—f;’q—)-ﬂ), B-—A(4X;l'¢-+tg(p) (4.8)

The function C is determined after substituting (4.7) into (4.2) and taking account of (4.8), and the
functions P;(@) are found when constructing the next approximation.
For the parameter A, when account is taken of the correction of the first approximation, we obtain

A=A + 2e4[ADtgB /1§ 49)

Formula (4.9) is identical with that obtained in [1] for a shell with freely supported edges.
Consequently, the parameter A for joined shells differs from the value of A for the longer shell with
freely supported edges by an amount of the order of O(e?).

5. To determine the quantity A, it is sufficient to consider the boundary-value problem of the second
approximation when ¢ = 0
(Gy =AW + (G = AW +(Gy - Ay )Wl = NwlP

0 = _p® ) = 5 T when x®) = x®)

w)
2) N (2) 1
;k) W, — Wo.x €08 2P a0 L w0xcos2B w( ) PYeS
5o sin ZB 2 5o sin 2[3
A A(2)

~ cos2p -

W), =g T+ Lo S Co” | S o) g GD
sin2f so

3(2) A
n _ £ On cos2B-Q, (2)
w =5, T, g |
2,xx 0( n sm2ﬁ so gB

when x©) = x{(0), So =(q(()'))2

when x® = x® (0), 5, = (gV)%
The boundary conditions contain the values of the edge-effect functions.
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Substltutm§ solution (2.2) into (1.1)~(1.5) we obtain the following relationships for determining the

constants C in the edge-effect functions (2.9)
w® = 00 when x® = x{¥ (5.2)
W =@ O @ - wh) —w®, MY =g (5.3)

S"(l:) _ 5'('2) l(q(l))-3(w(l) w(2) ) when x® = x(k)(O)
It follows from (5.2), that C;® = C,¥ = 0. Hence, on the freely supported edges, the principal terms
in the series expansions of the edge-effect functions vanish.
Equations IS)S 3) are a system of linear inhomogeneous algebraic equations for determining the four

constants C3
In the non-resonant case (3.11), w¢? = 0 and the solution of system (5.3) has the form

al
Y = cPP= TD‘% P =C{P= :D(” (54)

ra=n-nlV3, n=n-r/\3

From the condition for the boundary-value problem (5.1) to be solvable when k = 1, after some
reduction and taking account of (2.9), (4.5) and (5.4), we obtain

1 [4r? 169 7
Ay=—rl——+—1gp |-—+A
2 313”(1{," 18 gB) 6 2

Ao ] [ﬁ(ﬁﬂ)n 4 J
LAEYU)

4 sin2p

Consequently, in the non-resonant case
A=AD + AP + e, (5.5)

We note that A, — > when B — 0 and hence, for small §, the accuracy of the calculation is reduced.
In the resonant case (3.12)

M atd
cH =P - 040 (DY + DPry;, CP =CP = 40 (DD + DPp,,

and, from the conditions for the boundary-value problem (5.1) to be solvable, it follows that

AD =, + A,z AP =Ny + Az, z=DP /DY

Let us assume that A, ~ 1. The magnitude of z is then determined from the condition
A = A 40 = AP + AP + AP
which reduces to a quadratic equation which has two real roots

Z,=p% w/,;2 +1>0, p=2aA/[3Y4(M)? A,

In the resonant case

AL, A, <O
k={ ;o (5.6)

A, Ay >0

)"‘k = 7‘((;) + t‘3)‘(1” + 52(’*2 + AZZkI)
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and the form of the loss of stability with z = z; corresponds to A%.

When A = 0, in the case when A, < 0, the form of the loss of stability will be symmetric (D = D®),
When A — oo, formula (5.6) reduces to (5.5) and it can therefore also be used in the non-resonant case.

If A; = O(¢) and, in particular, A, = 0, an approximate value of A is found using formula (5.5) and
the next approximations have to be constructed to determine z.

It follows from (2.3), (3.2), (3.9) and (4.5) that the form of the loss of stability can be approximately
represented in the form

wh, xiP=xO< 1
W =
W(2), x£2)sx(2)5x(()2)

where

4is® (10350 ®
w(k)._.[1+ isy q,_( ) _L)_q)z Wo(k)exp(z E(CP))

3 36 32
(k)
+ 1052 _L q:02
9 48

k)42
)

() (k)2
Z(")((p)-iq(()k)q)(l+]1s2 csz—t‘ L

18 2

7 *
MogB w4 )

1
7N B R = Ol I (s

The functions w® are localized in the neighbourhood of the generatrix ¢ = 0 and oscillate rapidly
when ¢ varies. In the non-resonant case w® < w® and, consequently, the form of the loss of stability
is localized in the neighbourhood of the generatrix ¢ = 0 of the longer first shell.

The eigenvalue (5.7) is asymptotically twofold [3] since two real forms of oscillations Re w and Im
w correspond to it. This means that, in a small neighbourhood of the approximate value of (5.6), there
are two eigenvalues of boundary-value problem (1.1)(1.5) and the difference between them is O(e")
for any N.

Analo;ous results can also be obtained for other homogeneous boundary conditions on the straight
edgesx*) = x,® of the joined shells.

1)

6. The results of calculations of the upper critical pressure parameter A for joined cylindrical shells with hinged
supported edges are shown in Tables 1 and 2.

Table 1 illustrates the accuracy of the various asymptotic approximations as a function of the magnitude of R/A
for shells with the following values of the parameters: I§¥ = 4, I{¥ = 3, B = 45°, v = 0.3. The zeroth approximation
for A, obtained using formula (3.10), is given in the first row. The results of calculations using formula (4.9), taking
account of the first approximation, are given in the second row while the third row gives the results of calculations
using formula (5.6) and taking account of the second approximation. The values of the quantity z! = DW/D® are
shown in the fourth row.

Table 1
Rin 100 300 500
o 1378 1378 1.378
%) 1,654 1.587 1562
)} 1.670 1597 1.570
1 106 171 215
Table 2
@ 3 4 5
0
p=25° 1554 1.541 1.221
B=35° 1.611 1.602 1.267
p=45° 1670 1662 1314

B =55° 1.741 1,732 1.371
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The dependence of A on the length of the second shell % and the j joining angle B, when R/k = 100, =4
and v = 0.3, is investigated in Table 2. As pi mcreases, the critical pressure increases. The dcpendence of Lon I{?
has a more oomplex form. As long as If?) < I§"), the critical loading parameter barely changes{ since it is close to
the critical loading parameter for the first shell with hinged supported edges. When 9 ), the parameter A
decreases as I§? increases.

In the case of moderately thin shells (R < 200), the stability calculation should be supplemented with a
calculation of the stress—strain state since the maximum stress in the neighbourhood of the line where the shells
are joined can reach the limiting value earlier than when loss of stability occurs. The stresses can be determined
using the method of separating the stress—strain state into a zero-moment effect and a simple boundary effect [4].
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