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THE STABILITY OF CYLINDRICAl. SHELLS JOINED AT 
AN ANGLE UNDER THE ACTION OF A UNIFORM 

EXTERNAl, PRESSUREt 

S. B. F I L L I P O V  

St Petersburg 

(Rece/ved 11 November 1993) 

An asymptotic method [1] is used for the approximate solution of the problem of the loss of stability of the zero-moment stressed 
state of two thin closed elastic cylindrical shells of average length under the action of a uniform external lateral pressure. Simple 
approximate formulae are obtained for determining the upper critical pressure and the form of the loss of stability. It is established 
that the form of the lt~ts of stability is localized in the neighbourhood of the longest generatrix of the shell which has the greater 
length, and that the upper critical pressure differs only slightly from the critical pressure for the longer shell supported by a h in~  
along the joininoe line. 

1. Let us assume t]hat the cylindrical shells, joined at an angle 2~, have the same radius R and thickness 
h. We denote by x (k), q~(k) the system of coordinates in the median surface of  the kth shell. Suppose 

x.~t)(cp) - x~0 k) + (-'1) k÷l (l~ k) + tgl3coscp), g t )  + l~l) .  x~02) _/~2) 

/c ~ t ) -  LCc t) / R, k -1 ,2  

where L (t0 is the "average" length of the Kth shell (Fig. 1). 
Here  and benexfforth, quantities with a superscript k correspond to the kth shell. Superscripts may 

be omitted from formulae which hold for both shells. 
The equations of stability for each of the shells can be written in the following dimensionless form [2] 

T2-Q2,~-QI,x + X(w,~-'o,~)=o, Sx + T2,cp +Q2 =0 

~.~ + s~ = o, Q2 = M2., Q~ = M~,~ + 2H~,, H = O- v)ESo2,~ 

MI = ES(OLx + V02, ~), M2 = ~s (02, ~ + vOLx) (1.1) 

(I - v 2 )T I = u,x + v(w + a),q~), (I - v 2)T 2 = w + D,q, + vu, x 

2(1 - v)S = 10,x + u.¢, I01 = -w,x ,  "02 = -w,e  + "o 

Here, 7"i, T2, S, Qx, Q2, M1, M2, H are the dimensionless forces and moments, 01 and 02 are the 
8 2 2 angles of rotation, u, ~ and w are the dimensionless projections of the variables, e = h2/[12(1 - v )R ] 

is a small parameter, p is the value of the external pressure, v is Poisson's ratio and E is Yotmg's 
modulus. 

Let us assume that the straight edges of the shells are freely supported 

~k) = ~<~)" = w<*)= M~t)= 0, x<*) = x0 ¢k) (1.2) 

Along the line where the shells are joined x C1) = xf. 1), x C2) = xf. 2), the following continuity conditions 
must be satisfied: 
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Fig. 1. 

(a) for  the displacements  

where  

(b) for  the forces 

where 

u~n l)c sin ]3 + w O) cos 13 = -u~2)c sin ~ + w (2) cos 

u~ i) cos [3 - wO)c sin 13 = uff ) cos 13 + w(2)c sin 1~ 

= 

u(k) = u(k) cos y + ( -1)  TM x) (k) sin y, u~ k) = (-1)  ~ u (k) sin y + a) (k) cos y 
/I 

tgy + tgl3 sin ~0, c = cos y cos ~0 

Tn (I)c sin I~ + Qn (1' cos I~ = - T~ (2)c sin 13 + Q~2) cos 1~ 

T(') cos~-Q~')csin~= Tn (2) cosl3 + Qn(2)c sin I~ 

Sin(I) = .q(2) 
~ n t  

Tff ) = T1 (k) cos 2 y + 2(-1)  k+l S (t) sin Y cos y + T2 (k) sin 2 y 

• Sn(~ ) = ( -1)  k+l (T2 (k) - TI (t) sin y cos y + S(k)(cos 2 Y - sin2 Y) 

Qff) = Q[k) cos Y + ( -1)  k+l Q2 (t) sin Y 

(c) for  the angles of  ro ta t ion  and moment s  

where  

Mff ) = M~ ~) cos2 T + 2(-1)  TM H(k) sin Y cos Y + M2 (k) sin2 Y 

0(~ k) = O] k) cosy  + (-1)  TM 0(2 k) sin y 

(1.3) 

(1.4) 

(1.5) 

2. We shall seek an approximate  solut ion o f  the boundary-value  prob lem (1.1)--(1.5), which falls of f  
exponential ly on  moving away f rom the generatr ix  ~ = 0, in the form 

Certain small terms,  which have no  effect  on the approximate  formulae  obta ined in this paper  have 
been  discarded in relat ionships (1.1)-(1.5). For  instance, the effect  o f  suberitieal deformat ions  turns 
o u t t o  be unimpor tant .  However ,  it did turn  ou t  that  terms have to  be  re ta ined in (1.1) which do  not  
appear  in the teelmieal theory  o f  Donne l  and  Vlasov for  determining the critical pressure with the  
accuracy adopted  in this paper .  

It is hencefor th  assumed that  the joining angle 13 is not  a small quantity, that  is, [3 = O(1).  
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X = Lo + e,;£i + e2~,2 +... (2.1) 

Y = Ya + Yb (2.2) 

Here ,y  is any of the unknown functions occurring in (1.1). The first term in (2.2) describes the basic 
semi-zero-moment stress-strain state of the shell and the second describes the simple edge effect close 
to the edges x (k) :-- X(o k) and the joining line x (k) = x!/'). Let us represent the approximate solutiony~ in 
the form [1] 

(2.3) 

where 

Im { q(0) } = 0, Im { q,@(0) } > 0 (2.4) 

~= ~ d'y,,(x, lp) (2.5) 
n=O 

In order to determine the intensity factor a(y), the constants ~ and the functions q0P), y~(x, ¢#), we 
substitute (2.1) (2.3) into (1.1). Let us put a(w) = 0. Then, a0)) = 1, a(u) = a(T~) = 2, a(S) = 3 
and the function ~ satisfies the equation 

G~ - ~.~, = e ~'N~, 

~4 
G=~p"6 o .  +~2,  

3x" 

3 2 

t 3x'J 
3 

Here, • -~ is a formal asymptotic series and O-~Ony - y. 
The quantities ~, ~ , . . .  are expressed in terms of ~. In particular 

~----- -O-2~,x - e ~' (2 + v)O-4~,x=, ~ = -O-2~,xx + 2e 2 (q4 _ ~,oq2)~ 

~)= it~-l~ _ ivE2~-3~,xx, S~ -it~-3~,xxx + 2ie2q(q 2 - ~,o)~-lff, x 

(2.6) 

We expand the operator G, defined in (2.6) in series in powers of the parameter  e 

_±(32o0 : 33o0 3 
G2 = 2 t 3q2 3q)2 ~'q'~ 3q3 3q) 

=_i(  3Go ~_~_+ q.~ 32Go t G1 
3q 3~p 2 3q 2 ) 

+ q,~ 33G0 ~ (q,,p)2 34G0 1 
3 3q 3 4 3q 4 

(2.7) 

Substituting (2.1), (2.5) and (2.7) into (2.6), we obtain a sequence of equations for determining 
and w.(x, 

(Go - )~o)Wo = 0, (Go - ~O)Wl + (G1 - Ll)Wo = 0 .... 

The edge effect functions Yb can be represented in the form 

y~k)=ebtY)~(*)exp(~qoq)), ~(*)= ~ CJk)~jf)k)(x,e) 
j=l 

fytk) = exp[(_l) ,(g~) _ x(k))t) / e2], j = 1,2,3,4 

~)=-[l+(-1)Ji]/~/-2, j = l , 2 ,  r3=-r  2, r4=-~ i 

(2.8) 

(2.9) 
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where ~j, Cj (k) are unknown constants and qo = q(O). The functions f~k),f~k)become rapidly smaller as 
the distance from the straight edge of  the kth shell becomes larger, and the functions rapidly decrease 
as the distance from the joining line increases. 

By substituting (2.9) into system (1.1) we can find the relationship between the intensity factors b(y) 
and determine)~j. In particular 

,b=l, ,L=-rj, 
_ q0  a tg[~ Q-n~ = - r : ,  Sntj =iq-~°, l"nj . . . .  

r,. 

The actual values of  the intensity factors 

b ( w )  = 2, 

b(Q,,)=4, 

b(On) = O, b(Mn)=6 

b(Sn,) = 3, b(T n ) = 4 

are found after substituting the solution (2.2) into the boundary conditions (1.2)--(1.5). The same 
substitution enables us to determine the boundary conditions for F_x 1. (2.8). In the zeroth and first 
approximations these conditions are separated into two groups, each of  which contains only quantities 
which refer to one of  the shells. This enables us to solve the boundary-value problems of  the zeroth 
and fLrSt approximations separately for each of  the shells. 

3. We will now solve the boundary-value problems for Eq. (2.8) in succession. In the zeroth approxi- 
marion, we obtain two independent boundary-value problems 

(Go - ~'0)w~0 k) = 0 (3.1) 

w~0 k) _ ,, ck) = 0 when x <k) = x~0 k), x ~k) = x, ~*) 
- -  v v 0 , x .  ¢ 

which are identical with the boundary-value problems of  the zeroth approximation for the first shell 
(k = 1) and the second shell (k = 2) with freely supported edges. 

The solution of  each of problems (3.1) will be sought in the form 

Wo(X, Cp) = Po(~O)Wo(x,~o) 

Here  

P0 (q~) = 1 + Vlq~ + V2~O 2 / 2+... (3.2) 

and the coefficients Vn are determined when constructing the first approximation. The function W0 
satisfied the equation 

d 4 W o / d x  4 -ot4Wo =0,  ct 4 =2Loq 6 _q8 (3.3) 

and the boundary conditions 

W 0 = W 0 ~ x = 0 w h e n x = x 0 ,  x = x .  (3.4) 

It follows from (3.3) and (3.4) that 

~.0 = O~4]q 6 + q2 =j~q~, q({p)) 0.5) 

where o~ = x/l(9) is the least positive eigenvalue of boundary-value problem (3.3), (3.4), 1(¢#) = 1 c = tg 
13 cos ~p. 

The values q~ = 0 and q = q0 = q(0) for which 

~'o = f(O, qo) = min f(O, q) (3.6) 
q 
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correspond to the zeroth approximation for the critical loading parameter k0. 
It follows from (3.6) and (2.4) that 

q0 = 31183~0, 

Substituting (3.7) into (3.6), we obtain 

ao=g//o, Io=l(O)=Ic +tg~3 

Z, o = 4n / 33/410 

(3,7) 

(3.8) 

We will represent q(q~) in the form of the series 

q = ~ qnq)n 
n=0 n! 

where q0 is defined by (3.7). In order to find the remaining coefficients qn, it is necessary to differentiate 
(3.5) with respect to q~ and then put ¢p = 0. In particular 

4 ~  l lq 2 =_  ql (40q 2 +3) 
ql = , q2 =- 3q 0 , q3 3 ~ q2 (3.9) 

Without loss of generality, it may be assumed that/~1) ~/~2). Then/~1) ~/~2) and, consequently, the 
critical pressure parameter for the joined shells is calculated in the zeroth approximation using the 
formula 

~,~-- ~.(0 I) = 4• / (33/4/~ 1)) 0 . 1 0 )  

The eigenfunctions of boundary-value problem (3.3), (3.4), corresponding to ~1), can be represent- 
ed in the form 

Wo O) = D °) sin[ct°)(x(l) - x~)], W0 (2) = D t2) sin[~(2)(x 2 - x ~2))] 

where D (k) are arbitrary constants. 
In the non-resonant case 

1o (') - / 0  t2) - 1 (3.11) 

the boundary-value problem (3.3), (3.4), when k = 2, has only a trivial solution and hence D (2) = 0. 
In the resonant case 

l00) =/0 (2) + •2A, A = O(1) 

and the ratio D(2)/~D (1) is determined when constructing the following approximations. 

(3.12) 

4. The boundmT-value problem of the first approximation for each of the shells has the form 

(Go - ko)Wl - -(Gi - 7~l)Wo 

w l = w1,~x = 0 when x = Xo 

w I = wl.~ x - 4iq-lw0.urx.~ = 0 when x = x. 

(4.1) 

(4.2) 

and is an inlaomogeneous spectral problem. We obtain the condition for it to be solvable by multiplying 
Eq. (4.1) by W0 and integrating the resulting equality by parts over the range of variation of x, taking 
account of (4.2). After some reduction, the condition of solvability takes the form 

f,q( Po,~IO + Poll ) + ( f.q~ + f,,qqq,~ - 2~.li)10P 0 / 2 = 0 (4.3) 

X* X* 

I o = f W ] d x ,  1, - fWoWo.qflx 
x o .r.o 
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In view of the fact that f#(0, q0) = f#,(0,  q0) = 0, it follows from (4.3) that 

),q = - iq l /qq  (0, q0 ) / 2 = 2~/k0tgl3 / l 0 (4.4) 

• The coefficients Vn in the expansion (3.2) of the function P0(q~) are successively determined by 
calculating the derivatives with respect to tp of the left-hand side of (4.3) when q~ = 0. Taking account 
of  (3.9), we obtain 

103q 2 ,__1 
VI = 3q04q--'-L' V2 " 18q~ 16 (4.5) 

It follows from (4.1) and (4.3) that 

2i ( ) 
(Go -Xo)Wl = ---f,,PoWo +/f, qPo Wo,, * c% Wo 

q 2~t 

The solution of (4.6) will be sought in the form 

(4.6) 

wl = Pt (cP)Wo + A(~)Wo,~ + B(~)Wo,q, + C(cp) sinh[ct(x - x o)] 

We substitute (4.7) into (4.6) and use the equalities 

(Go -;~o)Wo,~ - f,q~W o, (Go -;Lo)Wo,w - 2f.,Wo, ~ + f, wWo 

(4.7) 

For the functions A and B, we obtain the expressions 

A= if.q eo, B = - A (  4 X*'~ + tg~ ] 
2y,~ (4.8) 

The function C is determined after substituting (4.7) into (4.2) and taking account of (4.8), and the 
functions PI(cP) are found when constructing the next approximation. 

For the parameter  L, when account is taken of the correction of the first approximation, we obtain 

(4.9) 

Formula (4.9) is identical with that obtained in [1] for a shell with freely supported edges. 
Consequently, the parameter  Z for joined shells differs from the value of E for the longer shell with 
freely supported edges by an amount  of the order of O(E2). 

5. To determine the quantity k2, it is sufficient to consider the boundary-value problem of the second 
approximation when tp = 0 

(G O - E o)w~ k) + (G, - E I )wl ~) + (G 2 - E 2 )W~o ~) = Nw~o k) 

w<2k) = _~:<k), "2,~<k) = SoT~k) when x ~) = XCo k) 

, ,2)_ W~o,)x cos213 w~o2x ) cos2l~ '" O) W (2 k ) "V O,x = , _ ~ ( 1 ) ,  W(22) _ , " 0 , x  

s o sin 2~ s o sin 2[3 

: , _ _  0 "cos2 -0  '2'] 5 , , ,  o 
2 xx so. + g,n'  ) -7o  

: ,  . ° .  
2.~x = sol. sin 2[~ ) So o.xxx'~' 

(5.1) 

when x ¢k) = x.fk)(0), s o = (q(1))2 

when x Ck) = xf. k) (0), So = (go(l)) 2. 
The boundary conditions contain the values of the edge-effect functions. 
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Substituting sohttion (2.2) into (1.1)--(1.5) we obtain the following relationships for determining the 
constants C]k7 in the edge-effect functions (2.9) 

if(k) =/~/~k) 0 when x (k) = X(o k) (5.2) 

~.) = ~ ( 2 ) .  6 ( , )  _ b(2)  _ ,..) . (2) £1(,)  = ~ ( 2 )  ( 5 . 3 )  
- -  ~ ' O , x  - -  ~ O , x '  

~n(I) ,~(2) ;(,.,(I)3-3/u (I) _ u,(2) x(k) t - - , ,  ='~'t0 , ~-0,~_~ "'o,~.=) when =x,(k)(0) 

It follows from (5.2), that C1 (k) = (72 (k) = 0. Hence, on the freely supported edges, the principal terms 
in the series expartsions of the edge-effect functions vanish. 

Equations (5.3) ~ e  a system of linear inhomogeneous algebraic equations for determining the four 
constants C3 (k') = (.4 (k). 

In the non-resonant  case (3.11), w0 (2) -= 0 and the solution of system (5.3) has the form 

C.~ |) = (7(42)--- 0t(°l) 0(|)r43, C~32) = C4H)= a(°|) D(I)r34 (5.4) 
4 4 

r43"~F4--F3/NI3, F34 = r3 - F4 / 3/-3 

From the condition for the boundary-value problem (5.1) to be solvable when k = 1, after some 
reduction and takhag account of (2.9), (4.5) and (5.4), we obtain 

_ l _ _ ~ ( 4 n  2 169 ^~ 7 
~'2 - "~'0al(I) \1 '0t(I) + ' ~ t g 0 ~ - 6 +  A2 

_- l___~(q~('~13+l)/t "'-v4 ] 
A2 at(I) | 21/4 I(I) sit- in ' -'~0 \ -" '0 

Consequently, iB the non-resonant ease 

x---~) +ex~' +FX2 (5.5) 

We note  that  Z2 --) ** when 13 --* 0 and hence, for small 13, the accuracy of the calculation is reduced. 
In the resonant case (3.12) 

c~l) C(42) . Gt(0 I) (x(I)0 (].)(-I . - - -7 - (D  (i) + D(2)r43 , C3 (2) . C (1) . ) + D(2)r34 -7-- z t  

and, from the conditions for the boundary-value problem (5.1) to be solvable, it follows that 

~'(~) = ~2 + A2Z, ~-(22) "~ '2  + A2 z-I,  z . ,  D (2) / D (I) 

Let us assume that A 2 - 1. The magnitude o f z  is then determined from the condition 

~(~) .  t~ ( l )+  82~(21)- ~(02)+ 8~(2)+ ~2k(22) 

which reduces to a quadratic equation which has two real roots 

7,1, 2 _--'p 4- 4 p  2 + 1 > 0, p = 2~A / [3 3/4 (/(I))2 A2 ] 

In the resonant case 

) " = / ~ 1 ,  A 2 > 0  

;~k - ~.0) + ~X(l ' + ~2 (X2  + A 2 z ~ )  

(5.6) 
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and the form of the loss of stability with z = zk corresponds to X*k. 
When A = 0, in the ease when A 2 < 0, the form of the loss of stability will be symmetric (D O) = D(2)). 

When A --> **, formula (5.6) reduces to (5.5) and it can therefore also be used in the non-resonant case. 
If A2 = O(e) and, in particular, A 2 = 0, an approximate value of X is found using formula (5.5) and 

the next approximations have to be constructed to determine z. 
It follows from (2.3), (3.2), (3.9) and (4.5) that the form of the loss of stability can be approximately 

represented in the form 

where 

w = f w ( I ) '  -~0"(I)<-- ...~(I)<-- .,.,v(l) 

w (t)--- [1 + 4is~k)3 q~-~[ 103s(2 * ) ~  ~_2.)q~l ~ 2 iW d] ~,) exp~)/Z~t)(q~)~ 

= 4 ~ l0 (k) ' s~') . I_.L__q(0 ') , s(2*) . .(s[tO)2 

The functions w (k) are localized in the neighbourhood of the generatrix 9 = 0 and oscillate rapidly 
when ~p varies. In the non-resonant case w (2) ,~ w 0) and, consequently, the form of the loss of stability 
is localized in the neighbourhood of the generatrix ~p = 0 of the longer first shell. 

The eigenvalue (5.7) is asymptotically twofold [3] since two real forms of oscillations Re w and Im 
w correspond to it. This means that, in a small neighbourbood of the approximate value of (5.6), there 
are two eigenvalues of  boundary-value problem (1.1)--(1.5) and the difference between them is O ( ~ )  
for any N. 

Analol~ous results can also be obtained for other homogeneous boundary conditions on the straight 
edges x (k7 = Xo (k) of  the joined shells. 

6. The results of calculations of the upper critical pressure parameter X for joined cylindrical shells with hinged 
supported edges are shown in "lhbles I and 2. 

"lhble I illustrates the accuracy of the various asymptotic apl~yoximations as a function of the magnitude of R/h 
1) for shells with the following values of the parameters: l~ = 4, 41) ffi 3, 13 ffi 45*, v ffi 0.3. The zeroth approximation 

for Z, obtained using formula (3.10), is given in the first row. The results of calculations using formula (4.9), taking 
account of the first approximation, are given in the second row while the third row gives the results of calculations 
using formula (5.6) and taking account of the second approximation. The values of the quantityz -1 = DO)/D (2) are 
shown in the fourth row. 

Table 1 

R/h 100 300 500 

(0) 1.378 1.378 1.378 
(I) 1,654 1.587 1.562 
(2) 1.670 1,597 1.570 
z -1 106 171 215 

Table 2 

(02 3 4 5 

13 = 25 ° 1,554 1.541 1.221 
15 = 35 ° 1.611 1.602 1.267 
15 = 45 ° 1,670 ! ,662 1.3 ! 4 

= 55 ° 1,741 1.732 1.371 
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The dependence of X on the length of the second shell/~2) and the joining angle 13, when R/h = 100, lo O) = 4 
and v : 0.3, is investigated in Table 2. As ~ increases, the critical pressure increases. The dependence of Z on/~2) 
has a more complex form. As long as 1~2) </~l), the critical loading parameter barely changes, since it is close to 
the crRk---------------~l loading parameter  for the first shell with hinged supported edges. When/~2) </~t), the parameter k 
decreases as !~2) incrtmses. 

In the case of  moderately thin shells (R/h < 200), the stability calculation should be supplemented with a 
calculation of the stress-strain state since the maximum stress in the neighbourhood of the line where the shells 
are joined can reach the limiting value earlier than when loss of stability occurs. The stresses can be determined 
using the method of separating the stress-strain state into a zero-moment effect and a simple boundary effect [4]. 
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